hwace.blogg.se

Rotor blades in forward flight
Rotor blades in forward flight







rotor blades in forward flight

Certaines conceptions de pales ont été construites et mises à l’essai en vol sur un UAV à rotor principal unique Blade 600X (rayon de pale 671 mm) afin de valider les résultats théoriques. La théorie BEMT a été utilisée afin de mettre à l’essai différents profils d’aérodynamique et formes de pales de rotor à l’aide de données de profils aérodynamiques issues de simulations de dynamique de fluides de calcul 2D avec des nombres de Reynolds représentatifs des éléments de pale. L’optimisation de pales de rotor à profil aérodynamique de pales dont le nombre Reynolds se situe entre 100 000 et 500 000 - caractéristique des petits véhicules aériens sans pilote (UAV) à un seul rotor - a été effectuée pour le vol stationnaire à l’aide de la théorie aérodynamique sections de pale/changement d’impulsion (« BEMT ») et démontrée par des essais en vol. The presented results could serve as useful guidelines to single-rotor UAV manufacturers and operators for increasing endurance and payload capabilities. The rotor diameter and root chord were kept identical to the original rotor and hence had no contribution. The blade twist and airfoil profile only had a minor effect on the power consumption, contributing 7% and 6% to the improvement. Reducing the rotational frequency accounted for 45% of the improvement in power consumption, while the taper ratio and blade number accounted for 25% and 17%, respectively. The best of the improved blade designs increased the figure of merit, a measure of rotor efficiency, from 0.31 to 0.68 and reduced power consumption by 54%. The parameters considered during the optimization process were the rotor frequency, radius, taper ratio, twist, chord length, airfoil profile, and blade number. Selected blade designs were manufactured and flight tested on a Blade 600X single main-rotor UAV (671 mm blade radius) to validate the theoretical results. BEMT was used to test various airfoil profiles and rotor blade shapes using airfoil data from 2D computational fluid dynamics simulations with Reynolds numbers representative of the blade elements. Rotor blade optimization with blade airfoil Reynolds numbers between 100 000 and 500 000 - characteristic of small single-rotor unmanned aerial vehicles (UAV) - was performed for hover using blade element momentum theory (BEMT) and demonstrated via flight tests.









Rotor blades in forward flight